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Abstract—For the first time, the combination of mutual infor-
mation analysis and correlation power analysis is proposed to
enhance the accuracy and success rate of side channel analysis.
Using the k-nearest-neighborhood (KNN) algorithm, correlation
power analysis is combined with mutual information analysis to
classify various possible keys to two classes of correct and wrong
keys. The advantage of the combination of the distinguishers is
two fold. First, the accuracy of the estimation is enhanced due to
availability of multiple possible values for the correct key. Second,
the number of measurements required to disclose the correct key
is reduced by combining the distinguishers. The effectiveness of
combined distinguisher is verified by extensive simulations. The
number of measurements required to perform a side channel
attack with a success rate of 90% is improved, respectively,
by 20% and 49%, as compared to individual correlation power
analysis and mutual information analysis.

Index Terms—Side channel analysis, side channel distinguisher,
mutual information analysis, correlation power analysis, com-
bined side channel distinguisher.

I. INTRODUCTION

S IDE channel attacks are an important class of attacks on
cryptographic circuits to obtain the secret key through the

analysis of leakage information, such as power consumption,
electromagnetic emanations, and timing information. With an
effective side channel attack, the secret key can be recovered
in couple of minutes with inexpensive equipment, while a
supercomputer can take 149 trillion years to break the secret
key with the brute force search [1]. Since the first side channel
attack in 1996 [2], physical vulnerabilities of the devices
have been utilized to endanger the privacy of the electronic
devices, such as mobiles and computers [3]–[6]. Various tools,
called as distinguishers, have been proposed for the analysis
of side channel information to disclose the secret key of the
cryptographic circuits. Mutual information analysis (MIA) [7]
and correlation power analysis (CPA) [8] are among the
distinguishers used for analysis of side channel information. In
CPA, linear statistical dependencies between the side channel
information and a hypothetical model, which is predicted by
the attacker for the side channel output, are detected, while in
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MIA, any statistical and functional dependencies between the
actual leakage and hypothetical model are detected [9].

The optimality of each distinguishers is based on the noise
distribution of the leakage information and the accuracy of
the hypothesized power model predicted by an attacker. Each
of the distinguishers has the conditions under which the
distinguisher is optimal [10]. For the noise with Gaussian
distribution and the known hypothetical power model, the
CPA is optimal distinguisher [10], and the correct key will be
obtained with the less number of measurements as compared
to the MIA. However, if the actual power consumption of
the circuit differs from the hypothetical power model of the
attacker, or if the noise distribution deviates from the Gaussian
distribution, the optimality of the CPA will be compromised by
deviations from the assumptions, and the MIA will be optimal
as compared to CPA in the presence of the unknown power
model, or non-Gaussian noise distribution [11]. These circum-
stances may occur in the presence of countermeasures [12]–
[19] or nanoscale nonidealities in the CMOS device [11], [20].
Thus far, choosing one of the distinguishers has been the
final solution to the side channel problems. Although a distin-
guisher can achieve the optimal performance for side channel
analysis, the results obtained from various distinguishers are
not necessarily the same. The differences in the results of
the distinguishers offer potentially complementary information
about the side channel leakage, which can be used to improve
the efficiency and accuracy of the side channel analysis.

In this paper, the combination of normalized mutual in-
formation [11] and Pearson’s correlation using k-nearest-
neighborhood (KNN) algorithm [21] is proposed to enhance
the accuracy of the side channel analysis, and to reduce
the number of measurements to disclose the key (MTD).
Normalized mutual information is analogous of Pearson’s
correlation in information theory and varies in [0, 1] range [22].
Using KNN algorithm, the data are classified based on the
similarities, which is determined by the distance from the
nearest neighbors [21]. To the best of the knowledge of the
authors, the combination of the distinguishers has not been
published in any previous work, and this is the first work on
the combination of the distinguishers.

The rest of the paper is as follows. In Section II, the
combination of two distinguishers is proposed to increase the
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Fig. 1. The classification of keys to the classes of correct and wrong keys is
shown for (a) CPA and (b) MIA. Because the process of finding the probability
density function in simulations is symmetric, the value of mutual information
for the possible keys and their complements are the same.

accuracy and reduce the MTD of the side channel analysis.
In Section IV, the proposed method is evaluated in detail for
four practical scenarios and the effectiveness of the proposed
method in reducing the MTD and increasing the accuracy is
verified. Finally, conclusions are offered in Section IV.

II. PROPOSED COMBINED DISTINGUISHER

A side channel distinguisher can be viewed as a classifier,
which divides possible keys into the classes of correct key(s)
and wrong keys [23]. As shown in Fig. 1a and 1b, the
problem of finding the correct key by CPA and MIA can
be considered as a classification problem with two classes.
Given the MIA and CPA as distinguishers, and the fact that
these distinguishers may carry complementary information,
various techniques can be applied to combine them [24]. In
Algorithm. 1 the proposed combined distinguisher to recover
the set of a secret key(s) (indicated by K∗) from the set of
candidate keys K and leakage trace L for MIA (indicated by
µ) and CPA (indicated by ρ) is summarized.

Algorithm 1 Proposed algorithm for combined distinguisher

Input: K =
{
k1, . . . , k|K|

}
, L =

{
l1, . . . , l|L|

}
Output: Secret key(s) K∗

Initialization :
1: For each ki compute ρi and µi

2: X ← {(ρi, µi), i = 1, . . . , |K|
3: di ← compute 1-NN distance for each xi ∈ X
4: K∗ ← pickIndex(max(d))
5: return K∗

Reducing the number of MTD and decreasing sensitivity
of the secret key recovery resultant to the accuracy of the
leakage model are two principal motivations for combining
distinguishers. By combining the distinguishers, the secret
key can be obtained using a fewer number of measurements
as compared to the use of individuals of the distinguishers

thanks to additive information given by different distinguish-
ers; however, the results may not be obtained by individual
distinguisher with the same MTD.

Due to the imprecision in the leakage model and compu-
tations of CPA and MIA, the use of individual distinguisher
may lead to a wrongly distinguished key [11], [13]. Utilizing
the combined distinguisher reduces the sensitivity of the
hypothesis test to the imprecision of the leakage model and
computation errors.

III. EVALUATION OF THE PROPOSED METHOD

Simulations are performed in MATLAB where machine
learning and pattern recognition toolboxes are used [25].
Prazen window density estimation is used for probability
density estimation to use in the mutual information and
entropy calculations [26]. For simulations, the simultaneous
computation of normalized mutual information and Pearson’s
correlation is used on side channel leakage information. The
utilization of the scatter plot facilitates the inspection of
patterns in the information obtained from the side channel
by MIA and CPA. The pattern seen in Fig. 2 is the effect of
increasing noise and increasing the number of measurements
on the classification boundaries. As shown in Fig. 2a, Fig. 2b,
and Fig. 2c, as the noise increases, the scattering of the mutual
information and Pearson’s correlation values is increased, and
the boundary between the classes of possible correct keys and
wrong keys is obscured. As the number of measurements is
increased (Fig. 2d, Fig. 2e, and Fig. 2f), the boundary between
the classes will be more clear, and the classification of the
keys will be possible to the class of correct key(s) and the
class of wrong keys. In order to confirm the improvement
in the accuracy and success of the side channel analysis
using the combined distinguisher, four scenarios corresponding
to four practical cases are considered. These scenarios are
based on literature for the optimal conditions for each of the
distinguishers [11].

1) Known model and Gaussian noise: The hypothetical
power model by an attacker is linearly correlated with the pro-
cessed information in the cryptographic circuit in the absence
of countermeasure and conditional variations in the power
consumption, under these circumstances, distribution of noise
will be Gaussian due to the central limit theorem [9], [27]. In
the simulations shown in Fig. 2, known hypothetical leakage
model and noise with Gaussian distribution are used. As shown
in Fig. 2d, Fig. 2e, and Fig. 2f, CPA outperforms the MIA
and converges faster (with lower number of measurements) to
the correct key. When the number of measurements increase
further, both MIA and CPA converges to the same result as
the correct key.

2) Unknown model and Gaussian noise: Different encoding
techniques, such as bus-invert coding [28], [29], are typically
employed in modern digital circuits to reduce the power
dissipation and increase the reliability. Due to the conditional
variations in the power consumption of the circuit with bus-
inverting method, hypothetical power model will be different
from the linear power consumption model [28]–[30]. This
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Fig. 2. Effect of increasing the noise and increasing the number of measurements on the scattering behavior of the distinguishers. The hypothetical power
consumption model is identical with the actual leakage power of the cryptographic circuit, and the noise distribution is Gaussian. For the fixed number of
plaintexts (=500), noise is increased from (a) σN = 0 mV to (b) σN = 5 mV and (c) σN = 30 mV . For the fixed noise σN = 30 mV , number of
measurements is increased from (d) 500 plaintexts to (e) 50,000 and (f) 500,000 plaintexts.
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Fig. 3. S-box of AES with an encoder and decoder for reducing the power
consumption and increasing the security of the memory interface [29], [30].
Scontrol is related to the additional bus(es) for controlling the coding process.

technique is used in the design of a secure memory interface
in [29] and to design a low-power S-box of an AES in [30],
as shown in Fig. 3. In Fig. 4 the simulated case is for an
S-box of AES with bus-invert coding, where the complement
of data is transferred when the Hamming weight of the data
on the bus exceeds four. While CPA converges to the wrong
key, the MIA converges to the correct key(s), and the result
of combined distinguisher is dominated by MIA. As shown
in Fig. 4c, CPA converges to the wrong key (the correct key

appears with the least correlation in the CPA), while using the
proposed method, the correct key is one of the two keys with
the highest probability.

3) Known model and non-Gaussian noise: In presence of
measurement noise, quantization noise in sampling devices,
and spikes, the final noise distribution of the leakage infor-
mation can be non-Gaussian [10]. The simulation for non-
Gaussian noise (uniform with σN = 30 mV ) with a known
power model is shown in Fig. 5, where the MIA outperforms
the CPA [11].

4) Unknown model and a combination of Gaussian and
non-Gaussian noise: In the presence of quantization noise,
spikes, measurement inaccuracies, and conditionally variable
power consumption for the cryptographic circuit (e.g. bus-
invert coding technique), the noise distribution will be combi-
nation of Gaussian and non-Gaussian, while the hypothetical
power consumption model will be unknown to the attacker.
Then MIA is expected to outperform CPA for the unknown
power model and non-Gaussian noise distribution, while the
CPA is expected to outperform the MIA for the Gaussian
noise assumption of the side channel leakage. The competitive
situation for obtaining the secret key using the CPA and MIA
is when the MTD for CPA and MIA are close, as shown in
Fig. 6. Using the combination of distinguishers, in presence
of this competitive situation for distinguishers, the MTD for
success rate of 90% is improved, respectively, by 20% and
49% as compared to the individual CPA and MIA, as shown
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Fig. 4. Noise distribution is Gaussian with σN = 5 mV , but the leakage information from the circuit does not have a linear relationship with the hypothetical
power model, and the hypothetical power model is unknown to the attacker. The simulated case is for an 8 bits S-box with bus inverting.
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Fig. 5. Uniform noise with σN = 30 mV and known power model. MIA outperforms the CPA, and converges faster to the correct key. By increasing the
number of measurements, the key is obtained through both the CPA and MIA.
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Fig. 6. The competitive situation for obtaining key using the CPA and MIA.
Hypothetical power model is unknown to the attacker. Noise is combination
of uniform distribution with σN1 = ±0.5 mV and Gaussian distribution
with σN2 = ±25 mV .

in Fig. 7.

IV. CONCLUSION

A technique is proposed to combine the MIA and CPA
distinguishers using the k-nearest-neighborhood algorithm,
Pearson’s correlation, and normalized mutual information. The
advantages of the proposed method are to reduce the number
of MTD and the sensitivity of the hypothesis test to the
imprecision of the leakage model and computational errors as
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Fig. 7. Success rate of MIA, CPA, and combination of distinguishers with pro-
posed method is shown. The MTD for success rate for combined distinguisher
is improved by 20% and 49%, as compared to the use of individual CPA and
MIA. Noise is with σN = 26mV , and noise distribution is combination of
Gaussian and uniform distribution. The bus-inverting method is applied to
the S-box, where the complement of data are processed when the Hamming
weight of data exceeds four.

compared to sole distinguisher. The effectiveness of the pro-
posed technique is confirmed using extensive simulations for
various practical scenarios. The MTD for the success rate of
90% with combined distinguisher is improved, respectively, by
20% and 49%, as compared to CPA and MIA distinguishers.
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[16] W. Yu and S. Köse, “Exploiting Voltage Regulators to Enhance Various
Power Attack Countermeasures,” IEEE Transactions on Emerging
Topics in Computing, Vol. 6, No. 2, pp. 244–257, April 2018.
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