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1 Introduction

On-chip power delivery network is an essential part of modern integrated circuits. With a sophisticated control by
the power management unit, an off-chip voltage level is converted and regulated to a dedicated voltage applicable
to the on-chip load circuits. Meanwhile, high power conversion efficiency is maintained as load current changes.
Components of a representative on-chip power delivery network [1, 2, 3, 4, 5, 6, 7, 8, 9] are shown in Figure 1.
Within this network, output voltage of an off-chip voltage converter is supplied to the global power grid through
VDD C4 pads. The inputs of on-chip voltage regulators (VRs) are connected to the global power grid and the out-
puts of on-chip VRs are connected to the local power grids. Global ground distribution supplies the ground plane
and is connected to the package through GND C4 pads. Multiple voltage domains can be enabled by the distributed
VRs providing disparate local power grids. Significant amount of work has been performed to demonstrate poten-
tial security vulnerabilities of shared resources within multi/many-core processors. One of these inevitably shared
resources is the constituent of the power management and delivery subsystem such as the global power grid shown
in Figure 1. Our recent works [10, 11] reveal a new covert channel due to shared power budget enforced by hier-
archical on-chip power management. In this article, a previously unexplored, novel class of analog covert channel
leveraging switching noise modulation is uncovered. The threat model and related mechanisms to form the covert
communication are detailed and proof of concept results are provided.

2 Threat Model

Covert channels make leakage of sensitive information possible even when there is no designated media for trans-
mission of such information [12]. The transmitting and receiving end can be, respectively, referred to as the source
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Figure 1: On-chip power delivery network.
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Figure 2: Power delivery network induced covert channel.
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and sink. Both the source and sink can be either hardware components or software components sharing hardware
resources [13]. The source is assumed to have access to the sensitive information but not to the network, which can
be accessed by third parties. On the other hand, the sink is assumed to be capable of transmitting information through
the network but have no access to the sensitive information. Due to the existence of covert channels, the sensitive
information can be transmitted from the source to the sink and further to the third parties through the network. The
covert communication, however, is not apparent to the hardware and software layers residing in the same system.
In this article, on-chip VRs are considered as the source and sink. Covert communication is established through the
shared global power grid.

3 Proof of Concept Results

0 0.2 0.4 0.6 0.8 1

#10-6

0

0.1

0.2

E
nc

od
ed

 In
fo

rm
at

io
n 

in
 lo

ad
 c

ur
re

nt

0 0.2 0.4 0.6 0.8 1

#10-6

0.2

0.3

0.4

T
ot

al
 

lo
ad

 c
ur

re
nt

0 0.2 0.4 0.6 0.8 1

#10-6

0.86

0.87

0.88

O
ut

pu
t o

f V
R

1

0 0.2 0.4 0.6 0.8 1

#10-6

1.15

1.2

In
pu

t o
f V

R
1

0 0.2 0.4 0.6 0.8 1

#10-6

1.15

1.2

In
pu

t o
f V

R
2

0 0.2 0.4 0.6 0.8 1

#10-6

0.87825

0.8783

0.87835

O
ut

pu
t o

f V
R

2

0 0.2 0.4 0.6 0.8 1

#10-6

0.665

0.67

0.675

C
on

tr
ol

 s
ig

na
l 

of
 V

R
2

b)

c)

d)

e)

f)

a)

g)

time(sec)Figure 3: Propagation of the total switching power noise
from source to sink over the global power delivery net-
work with intentional noise (i.e., encoded information
leak) shown in blue and without intentional noise shown
in red.

As a proof of concept example, a power delivery net-
work consisting of an off-chip VR and multiple on-chip
VRs is considered, as shown in Figure 2. The output
voltage of the off-chip VR is connected to the global
power grid, which supplies the inputs of the on-chip
VRs. There are n cores with each powered by an on-
chip VR. The output of each on-chip VR is connected
to a local power grid providing the supply voltage of
the load circuit within that specific core. It is assumed
that the sink core is idle while the source core is active
when covert channel needs to be established. Without
loss of generality, low-dropout (LDO) regulators are im-
plemented as the on-chip VRs for this example. LDOs
similar to [5] are adopted and an RC chain model is uti-
lized for the power grid. Power grid parameters from
[14] are applied. The activity of the source is modeled
as a transient current at the output of VR1 with the pat-
tern decided by a random bit stream. When there is no
covert communication, the load current of VR1 consists
of some leakage current and this transient current. When
sensitive information needs to be transmitted from the
source to the sink, a periodic current encoding the in-
formation will be added to Load1. Meanwhile, as the
sink is idle, the load current of VR2, Load2, only carries
a small transient current and some leakage current. Due
to the added periodic current to Load1, fluctuations at
the input of VR1 are introduced as the control loop of
VR1 begins to respond. Such fluctuations also occur at
the input of VR2 due to the shared global power grid.
The control loop of VR2 also responds to maintain a
constant supply voltage Vdd2.

The transmission of the voltage fluctuations from the source to the sink core is simulated in Cadence according
to the above discussion utilizing a 45nm CMOS process. The simulation results with and without intentional noise
are demonstrated in Figure 3 with, respectively, blue and red lines. The encoded information reflected in the load
current of the source is shown in Figure 3a. The total load current of the source is shown in Figure 3b. The output
of VR1 experiences fluctuations due to the periodically switching load current as featured in Figure 3c which in
turn lead to fluctuations at the input of VR1 as shown in Figure 3d. Such fluctuations can further propagate to the
input of VR2 through the shared global power grid as can be seen from Figure 3e. This intentional noise generated
at the output of VR1 results in some fluctuations at the output of VR2 seen from Figure 3f. The control signal of
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VR2, which is visible to both the local and global controllers in a hierarchical power management system, is also
highly affected by the encoded information due to the tight integration of the power delivery network that consists
of the distributed VRs as demonstrated in Figure 3g. As supported by the preliminary data, the sensitive information
encoded in the form of a switching load current at the output of an on-chip VR can propagate through the global
power grid and be sensed by the local power controller of the other cores. Considering the digital control of on-chip
VRs that is implemented in state-of-the-art integrated systems, sensitive information carried by the control signal of
the on-chip VR at the sink side can be processed digitally without dedicated hardware.

4 Discussions

This proof-of-concept demonstrates the crucial need for security-aware design of on-chip power delivery network.
As the number of voltage regulators that co-reside on a single die increases, the distributed power delivery networks
require tighter integration which leads to the increased number of shared resources such as capacitors (be it flying or
decoupling), inductors, and most importantly the local and global power/ground interconnection network. Addition-
ally, the design of each individual VR becomes more complicated due to the challenges such as reliability, stability,
power efficiency, response time, area, and workload-awareness. Each additional feature to tackle any of these chal-
lenges would potentially make the power delivery network more vulnerable against covert communication attacks
similar to those explored in this paper. We claim that security should be included within these challenges early in
the design process not only at the system or architectural level but also at the low level (analog/mixed signal/digital)
circuit design.

5 Conclusions

On-chip power delivery network provides regulated voltage levels to the load circuits while at the same time is vul-
nerable to information leakage through shared resources. A power delivery network induced analog covert channel
enabled by shared global power grid and switching noise modulation is investigated in this article. Due to the strong
correlation between the input and output of on-chip VRs, fluctuations can be introduced at the input of VR at the
source side due to added switching load current. Such fluctuations propagate through the shared global power grid
and are finally sensed by the local power control circuitry of the other cores. Proof of concept results for the on-chip
power delivery network induced analog covert channel are demonstrated through Cadence simulations. Increased
design complexity and shared resources necessitate inclusion of security features at the early design stage.
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